Definição – O que significa Redução de Dimensionalidade?
A redução da dimensionalidade é uma série de técnicas de aprendizado de máquina e estatísticas para reduzir o número de variáveis aleatórias a serem consideradas. Envolve seleção e extração de recursos. A redução da dimensionalidade torna a análise de dados muito mais fácil e rápida para algoritmos de aprendizado de máquina sem variáveis estranhas para processar, tornando os algoritmos de aprendizado de máquina mais rápidos e simples.
Definirtec explica a redução de dimensionalidade
A redução da dimensionalidade tenta reduzir o número de variáveis aleatórias nos dados. Uma abordagem de K-vizinhos mais próximos é freqüentemente usada. As técnicas de redução de dimensionalidade são divididas em duas categorias principais: seleção e extração de recursos.
As técnicas de seleção de recursos localizam um subconjunto menor de um conjunto de dados multidimensional para criar um modelo de dados. As principais estratégias para o conjunto de recursos são filtro, wrapper (usando um modelo preditivo) e incorporado, que realizam a seleção de recursos durante a construção de um modelo.
A extração de recursos envolve a transformação de dados de alta dimensão em espaços de menos dimensões. Os métodos incluem análise de componente principal, PCA kernel, PCA kernel baseado em gráfico, análise discriminante linear e análise discriminante generalizada.